1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
|
import numpy as np import matplotlib.pyplot as plt import pandas as pd
dataset = pd.read_csv('Data.csv') X = dataset.iloc[:, :-1].values y = dataset.iloc[:, 3].values
from sklearn.impute import SimpleImputer imputer = SimpleImputer(missing_values=np.nan, strategy = 'mean') imputer = imputer.fit(X[:, 1:3]) X[:, 1:3] = imputer.transform(X[:, 1:3])
from sklearn.preprocessing import LabelEncoder, OneHotEncoder from sklearn.compose import ColumnTransformer labelencoder_X = LabelEncoder() X[:, 0] = labelencoder_X.fit_transform(X[:, 0])
columnTransformer = ColumnTransformer([('encoder', OneHotEncoder(), [0])], remainder='passthrough') X = np.array(columnTransformer.fit_transform(X), dtype=np.str)
labelencoder_y = LabelEncoder() y = labelencoder_y.fit_transform(y)
from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=0)
from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() X_train = sc_X.fit_transform(X_train) X_test = sc_X.transform(X_test)
|